If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7x^2+83x+66=0
a = 7; b = 83; c = +66;
Δ = b2-4ac
Δ = 832-4·7·66
Δ = 5041
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{5041}=71$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(83)-71}{2*7}=\frac{-154}{14} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(83)+71}{2*7}=\frac{-12}{14} =-6/7 $
| 28−6x+4=30−3x | | 4x2−8x−3=0 | | 289+50x=15x | | t=3t-7=4t-7 | | 4-m/3=5+m/2 | | 3x2+19x+16=0 | | -8x+7x-4x=0 | | X*2+9=x*4+3 | | (2^2-x/2)=(1/128) | | 1.5x+0.5x=8 | | 3x-9=8-x | | 10x+5(139-x)=935 | | 30=4.9t² | | 5+x=x*4+3 | | x^2(x^2−64)−81(x^2−64)=0 | | x(55-x)=756 | | 2n-8n+5=35 | | 2x*3=x*7-11 | | F(n)=3+4(5-1) | | 2=11^t | | 0=-4.9t^2+24t+2 | | 1/2|3c+5|=6c+4 | | .6(x+30)+x=82 | | 3/4=−6e−3/5 | | 85=4(2x+5)+5(2x+7) | | 6a/5a=a | | 2x*7=122 | | .6(x+)+x=82 | | 2x*3=122 | | 4y-3=-5+7 | | X*2+57=x*5+207 | | 3(x+10=15 |